

cancer Biomedical Informatics Grid

Silver and Gold: Architecture, Compatibility and the Cancer Biomedical Informatics Grid

Peter A. Covitz, Ph.D. Director, Bioinformatics Core Infrastructure NCI Center for Bioinformatics

cancer Biomedical Informatics Grid

NCI Center for Bioinformatics

Mission

Provide infrastructure and applications to support and enhance the value of cancer research consortia

Partnerships Drive the NCICB

- Our friends in need...
 - Program managers
 - Consortium directors
 - Genomics initiatives
 - Clinical trial study groups
 - NCI divisions
 - Cancer centers [caBIG]
 - Major program to connect NCI-designated Cancer Centers across the nation to a common cancer biomedical informatics "grid"

Some Current Partners

- Genomics
 - Cancer Genome Anatomy Project (CGAP)
 - NCI Laboratory of Population Genetics
 - NCI microarray consortia, MGED
- Clinical Trials and Epidemiology Studies
 - NCI Center for Cancer Research, Division of Cancer Prevention, Cancer Therapy Evaluation Program
 - NCI Division of Cancer Control and Population Sciences, Division of Cancer Epidemiology and Genetics
 - SPOREs, Rembrandt, and other translational research trials
- Model Systems and Imaging
 - Mouse Models of Human Cancer Consortium
- Vocabulary and Data Standards
 - NCI Office of Communication
 - Several NCI Divisions
 - NLM, FDA, VA, other federal agencies

caBIG: From Village to City

Bronze

- Cottages
- Outhouses
- Dirt paths
- Isolated homes

Silver

- Cottages to buildings
- Outhouses to indoor plumbing
- Dirt paths to paved streets
- Isolated homes to neighborhoods

Gold

Village to City

Urban planning

This land is your land...

- Open source, open access, federated
- Obligation to share, contribute to the larger biomedical community
- Value of data outlives original study

Courtesy: Charlie Mead

Interoperability

in-ter-op-er-a-bil-i-ty

-ability of a system...to use the parts or equipment of another system

Source: Merriam-Webster web site

interoperability

ability of two or more systems or components to
 exchange information and to use the information, that has been exchanged.

Source: IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries, IEEE, 1990]

Syntactic interoperability

Pillars of Interoperability

- Common models across all domains of interest
- Foundation of rigorously defined data types
- Methodology for interfacing with controlled vocabularies

cancer Biomedical Informatics Grid

caBIG Compatibility

Levels of Compatibility

Maturity Model	Legacy	Bronze	Silver	Gold
Interface Integration	- No Programming interfaces to the system are available. Only local data files in a custom format can be read - Some ad hoc data transfer mechanism such as FTP	- Provide baseline* programmatic access to data. Data can be read from remote electronic sources or from commonly used file formats Data can be pushed out to from applications to other external data sources	 Well-described API's that provide access to data objects. System architecture separated into tiers and interoperable components Data read in from standards-based electronic sources that support standard or commonly used interchange formats Documented component description of the underlying data structures that are accessible Standard messaging systems where appropriate 	 All features of Silver, plus: Interoperable with data grid architecture to be defined by caBIG Fully componentized provide access to individual resources in the form of grid services
Vocabularies / Terminologies & Ontologies	- Free text used throughout for data collection	- Use of publicly accessible standardized controlled vocabularies as well as local terminologies	- Standard terminologies approved by public standards bodies or the caBIG Vocabulary/CDE Workspace are used for all relevant data collection fields.	 All features of Silver, plus: Fully compliant with caBIG recommended standards for vocabulary terminology services and content sources
Data Elements	- No Structured metadata is recorded	 Some type of metadata describing the information in the system is used for data collection and external reporting. Metadata is retrieved from external repository shared by multiple applications. Common Data Elements should be built using controlled terminology 	 Use common standard electronic representation for CDE's such as ISO 11179 or comparable standard CDEs are harmonized and re-used from across the Domain Workspace Common Data Elements are built using standard controlled terminologies approved by public standards bodies or the caBIG Vocabulary/CDE Workspace 	 All features of Silver, plus: Programmatic access to all metadata, including data class descriptions, site and source information, and any other caBIG-defined metadata requirements and use information models Use the caBIG standard or electronic representation of metadata and Common Data Elements
Information Models	- No particular information model is used to represent data	- Some type of diagrammatic model describing the data relationship is available in electronic format	- Information models defined in a standard modeling language such as UML	- All features of Silver, plus: - Information models are harmonized with other s across the caBIG Domain Workspace

cancer Biomedical Informatics Grid

caBIG Silver

Information Models

- Constructed using Unified Modeling Language (UML)
- Object models expressing biomedical data classes, attributes, and relationships

Common Data Elements (CDEs)

- Metadata descriptors for cancer research data. Basis for common understanding of meaning.
- Derived from Information Models and through manual curation
- Built using standardized terminologies
- Harmonized across Domain Workspace
- Represented in standard format such as ISO/IEC 11179

Controlled Terminologies

- Standardized terminologies approved by public standards bodies or the caBIG Vocabulary-CDE workspace
- Used for all relevant data collection fields and for associated CDEs and metadata

Silver

Interfaces

- Data structures and APIs are well documented and aligned with object oriented information model
- Support for data input from standardized electronic formats and sources
- Standardized messaging interfaces where appropriate

Architecture

- Some freedom and flexibility as long as compliant with interface, model, metadata and terminology data standards
- HOWEVER, a component-based, tiered architecture is favored as a best-practice
 - Provides maximum flexibility
 - Best suited for layering an information model over a database
 - Allows problem space to be broken into manageable segments

cancer Biomedical Informatics Grid

Silver to Gold

- Silver compatible systems will be largely "Gold-ready"
- Interfaces and adaptors will bridge the tiers
- Allows for variation in types of systems that can 'plug into' caBIG
- Gold layer will provide standardized resource advertising, discovery and access framework for all caBIG compliant systems and tools

cancer Biomedical Informatics Grid

caBIG Gold: caGRID Phase I

The Yellowbrick Road to Gold

- Establish use cases
- Define requirements
- Conduct technology survey and evaluation
- Design prototype architectural model
- Develop prototype/reference implementation
- Publicize and discuss lessons learned
- Repeat...until ready for production deployment in caBIG

Grid requirements

Prototype layered upon caCORE

 caCORE is the 'Silver' technology stack developed and operated by the NCI

Advertisement and Mapping

cancer Biomedical

Informatics Grid

caBIG

Discovery and Query

Requirement Prioritization

	Prototype
Goals	-Query Data and Discovery Service – Full
	-Advertise services – Command line
	-Startup – Command line
	-Shutdown – Command line
	-Install – Basic
Requirement	-Define and prioritize requirements
	-Perform technology evaluation (Grid,
	Semantics)
	-Define architecture
	-Implement prototype – caBIO
	-Semantics - service level
	-Test GRID technology/framework

Preliminary Architecture

Admin & C	Configuration	GUI	Other Applications			
GRID						
Metadata		Metadata	Metadata			
caBIO	Other E	Domain Object	Other Data Source			

Some of the projects, technologies and standards that were examined

OGSA and Globus Toolkit 3

- **OGSA:** Open standard architecture for next generation grid-services
- <u>OGSI:</u> Core component of OGSA, provides a uniform way to describe grid services and defines a common pattern of behavior for all grid services.
- <u>GT3:</u> The Globus software technology toolkit version 3 is the major reference implementation of the OGSI standard.

OGSA-Data Access and Integration (OGSA-DAI)

- Middleware to assist with access and integration of data from separate data sources via the grid.
- The project was conceived by the UK Database Task Force and is working closely with the Global Grid Forum DAIS-WG and the Globus Team.

caGRID Phase I Architecture

Gold

OGSA-DAI Services

- OGSA-DAI uses three main service types
 - Data Access & Integration Service Group <u>Registry</u> (DAISGR) for discovery
 - Grid Data Service Factory (GDSF) to represent a data resource
 - Grid Data Service (GDS) to access a data resource

Interaction Model: Start up

- 1. Start OGSI containers with persistent services.
- 2. Here GDSF represents caBIO database.

- -DAISGR (registry) for discovery
- -GDSF (factory) to represent a data resource

-GDS (data service) to access a data resource

Interaction Model: Registration

3. GDSF registers with DIASGR

-DAISGR (registry) for discovery

-GDSF (factory) to represent a data resource

-GDS (data service) to access a data resource

cancer Biomedical

Informatics Grid

caBIG

Interaction Model: Discovery

4. Client wants to know about caBIO:(i) Query the GDSF directly if known or(ii) Identify suitable GDSF through DAISGR.

-DAISGR (registry) for discovery

-GDSF (factory) to represent a data resource

-GDS (data service) to access a data resource

-Grid Service Handler (GSH)

Interaction Model: Service Creation

Gold

5. Having identified a suitable GDSF client asks a GDS to be created.

Interaction Model: Perform

- 6. Client interacts with GDS by sending Perform documents.
- 7. GDS responds with a Response document.
- 8. Client may terminate GDS when finished or let it die naturally.

GDS Internals

Gold

caGRID Prototype Deployment

Gold

Lesson Learned

- There is an inherent learning curve in implementing grid technologies
- Grid technologies are still maturing and preparation for upgrades is essential
- Common meta data structure and terminology is necessary to effectively describe services and data
- A common query language is important to support federated queries

caBIG & The Mobius Project

http://www.projectmobius.org/

Scott Oster, Shannon Hastings, Stephen Langella, Tahsin Kurc, Joel Saltz

> Ohio State University Department of Biomedical Informatics Multiscale Computing Laboratory

The

Mobius Project Overview

- Identifies, defines, and builds a set of services and protocols enabling the management and integration of both data and data definitions.
- Features:
 - distributed creation, versioning, management of data models and data instances
 - on demand creation of databases
 - federation of existing databases
 - querying of data in a distributed environment.
- Consists of three main components:
 - The protocol definitions.
 - The definition of service interfaces for utilizing the protocol.
 - Initial service implementation.

The

Mobius Services

- Mobius Core Services
 - -Mako -- Federated Ad hoc Storage Services
 - -GME -- Global Model Exchange
 - -DTS -- Data Translation Service

Mako Service

- Exposes existing data services as XML data services through a set of well defined service interfaces based on the Mako protocol. (GGF/DAIS XML Realization Specification).
- Enables configuration file controllable binding of:
 - Network Listeners
 - Supported Interfaces
 - Protocol request implementation

cancer Biomedical

Informatics Grid

caBIG

Data Definition Management

- Need for a global data definition management!
 - -What is "global data definition" (Global Schema)?
 - -Promote creation and evolution of standard definitions of data types.
 - -For communication between multiple institutions they must agree on a common structure or a mapping between structures.
 - -Allow for sharing and discovery of data definitions in a grid environment.

Global Schema Issues

- User/Organization defined entities
 - e.g.: my "person" != your "person"
- Changing schemas
- Schemas disappear
- Prevent conflicting schemas
- Discovering schemas
- Multiple definitions of similar schemas for different communities (syntactic / semantic mapping)

Global Model Exchange Service

- Manages the Global Schema
 - handles presented issues
- Provides submission and discovery protocol
- Scale
- Replicate
- Cache
- DNS like architecture
 - hierarchical parent child tree structure

Technologies

- Protocol is XML with support for binary attachments
 - -Language independent
 - -Platform independent
 - -Grid communication protocol independent
- Service Definitions and Initial Implementations are Java
 - -Platform Independent
 - -Limited C++ client API has been implemented

Potential Uses of Mobius in caBIG

Mobius in caBIG: GME

- Use Cases:
 - caBIO Object Managers validate Domain Objects against schemas in GME
 - caBIO and non-caBIO clients publish schemas to GME and create data which validates against them
 - Institutions are able to communicate about caBIO objects, extensions to caBIO objects, and objects not present in caBIO using the same mechanism

cancer Biomedical

Informatics Grid

caBIG

Mobius in caBIG: Mako

- Utilize Mako service to virtualize data services
 - Expose data sources to caBIG Grid using Mako service

Mobius in caBIG: MakoDB

- Provide data cache utilizing Mako and MakoDB
 - Service interaction/collaboration for computation may require storage of temporary results and/or data cache
 - -Utilize Mako's ability to generate on demand databases from schemas
 - -Used locally by clients or as a Grid Service

cancer Biomedical Informatics Grid

caGRID Phase II

caGRID Phase II

- Capture Use Cases from caBIG Domain Workspaces
- Evaluate caGRID, Mobius and other technologies to select best components
- Establish target architectural design, review with caBIG Architecture Workspace
- Conduct a second round of prototyping and reference implementations with caBIG Domain Workspaces. Adjust designs as needed
- Plan for production implementation in caBIG beginning mid-2005.

Decisions to date

- XML will be primary interchange format for grid services
- XML Schema plus additional semantic metadata will describe structure and semantics of grid data
- Data services will represent data as objects, from UML information models, as serialized XML
- Globus Toolkit 3.2 and OGSA-DAI 4.0 will be basis for next prototypes. Planning for Globus TK 4.0, which implements a new grid standards, will be included

Issues to be tackled

- Universal data object identifiers, needed to satisfy computational biology use cases
 - Exploring Life Science Identifiers (LSIDs), ISO OIDs, and other potential solutions
- Caching for large result sets and performance requirements
- Standard query language needed to interrogate all grid services
- Representation of data analytical services in the grid
- Authentication/Authorization infrastructure
 - Use cases still not clear, but expected to be important

Acknowledgements

caBIG Architecture WS

Fred Hutchinson Ohio State Duke Cold Spring Harbor Labs Fox Chase Siteman/Wash, U. Holden/U. Iowa U. Pittsburgh Lombardi/Georgetown Mem. Sloan Kettering U. Chicago **Oregon Health Science NCI** Center for Cancer Research **NCI** Center for Bioinformatics

caGRID Phase I

William Sanchez Manav Kher Brian Gilman Steve Lagou *SAIC Panther Informatics Booz Allen Hamilton Terrapin Systems*

OSU - Mobius

Joel Saltz Scott Oster Shannon Hastings Stephen Langella Tahsin Kurc

Links to more information

NCICB

http://ncicb.nci.nih.gov

caBIG

http://cabig.nci.nih.gov

caGRID and Mobius documents posted on Architecture Workspace page

